Recovery of homogeneous polyoxometallate catalysts from aqueous and organic media by a mesoporous ceramic membrane without loss of catalytic activity.

نویسندگان

  • Sankhanilay Roy Chowdhury
  • Peter T Witte
  • Dave H A Blank
  • Paul L Alsters
  • Johan E Ten Elshof
چکیده

The recovery of homogeneous polyoxometallate (POM) oxidation catalysts from aqueous and non-aqueous media by a nanofiltration process using mesoporous gamma-alumina membranes is reported. The recovery of Q(12)[WZn(3)(ZnW(9)O(34))(2)] (Q=[MeN(n-C(8)H(17))(3)](+)) from toluene-based media was quantitative within experimental error, while up to 97 % of Na(12)[WZn(3)(ZnW(9)O(34))(2)] could be recovered from water. The toluene-soluble POM catalyst was used repeatedly in the conversion of cyclooctene to cyclooctene oxide and separated from the product mixture after each reaction. The catalytic activity increased steadily with the number of times that the catalyst had been recycled, which was attributed to partial removal of the excess QCl that is known to have a negative influence on the catalytic activity. Differences in the permeability of the membrane for different liquid media can be attributed to viscosity differences and/or capillary condensation effects. The influence of membrane pore radius on permeability and recovery is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel and efficient procedure for the preparation of benzyl alcohol by hydrolysis of benzyl chloride catalyzed by PEG1000-DAIL[BF4]/Fe2(SO4)3 under homogeneous catalysis in aqueous media

In this work, benzyl alcohol was obtained in 96% excellent yield by hydrolysis of benzyl chloride catalyzedby the recyclable temperature-dependant phase-separation system that comprised the ionic liquid PEG1000-DAIL[BF4], toluene and ferric sulfate under homogeneous catalysis in aqueous media. This novel methodnot only enhanced the yield, but also made the operating units easy workup. The catal...

متن کامل

A study on the catalytic activity of a new acidic ordered mesoporous silica (SBA-15)

SBA-15 is an interesting mesoporous silica material having highly ordered nanopores and a large surface area, which is widely employed as a catalyst. This mesoporous silica due to silanol groups is easily functionalized by various organic materials. A new acidic ordered functionalized mesoporous silica (SBA-15-Aminopropyl-Benzyl-SO3H) has been introduced as an efficient catalyst for ...

متن کامل

A study on the catalytic activity of a new acidic ordered mesoporous silica (SBA-15)

SBA-15 is an interesting mesoporous silica material having highly ordered nanopores and a large surface area, which is widely employed as a catalyst. This mesoporous silica due to silanol groups is easily functionalized by various organic materials. A new acidic ordered functionalized mesoporous silica (SBA-15-Aminopropyl-Benzyl-SO3H) has been introduced as an efficient catalyst for ...

متن کامل

Removal of methylene blue by mesoporous CuO/SiO2 as catalyst

Among a wide range of pollutants, organic pollutants have given rise to major environmental concerns. Various methods have been considered to mitigate the damage, including catalytic reduction to less hazardous compounds. Catalysts that benefit from high surface area and suitable surface sites for various steps of the catalytic reaction have shown outstanding results in performing such duties. ...

متن کامل

Efficient synthesis of xanthene derivatives in aqueous media in the presence of Cu-anchored furfural imine-functionalized halloysite

A novel hybrid catalyst based on grafting Cu on furfural imine-functionalized halloysite was designed, characterized and used for promoting synthesis of xanthene derivatives via three- component reaction of benzaldehyde derivatives, dimedone, and β-naphthol in aqueous media and under mild reaction condition. The results established high catalytic activity of the hybrid system, which was superio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemistry

دوره 12 11  شماره 

صفحات  -

تاریخ انتشار 2006